Gaussian Process Regression and Emulation STAT8810, Fall 2017

M.T. Pratola

August 25, 2017

 Recall our ball-drop experiment, which gave us a closed-form solution for drop time:

$$t_f = \beta \sqrt{h_0} = t_f(h_0)$$

where $\beta = \sqrt{-2/g}$.

- So t_f(h₀) describes the behavior of our ball, at least according to physics and under some assumptions.
- More generally, we might think of it as

$$t_f = \eta(h_0;g).$$

- What if the initial condition h'(0) is unknown and/or needs to be estimated?
- The solution becomes more complicated:

$$h(t) = \frac{1}{2}gt^2 + v_0t + h_0$$

where v_0 is the initial velocity at time 0.

• $t_f(g, v_0, h_0)$ is the solution to $\frac{1}{2}gt^2 + v_0t + h_0 = 0$ since $h(t_f) = 0$:

$$t_f = \frac{-v_0 - \sqrt{v_0^2 - 2gh_0}}{g}$$

 Could also think of it as t_f = η(h₀; g, v₀), which is some simulator model (e.g. Newton-Raphson) that "solves" the equation above.

- Suppose we implement $t_f(h_0)$ as a computer code, let's call it $\eta(h_0)$.
- Suppose we have a statistical emulator $Z(\cdot)$.
- What is a statistical model for the drop time?

•
$$t_{fi} = \eta(h_{0,i}) + \epsilon_1 = Z(h_{0,i}) + \epsilon_2$$

• $\epsilon_1 \sim N(0, \sigma_1^2)$
• $\epsilon_2 \sim N(0, \sigma_2^2)$

• What does σ_1^2 represent? What about σ_2^2 ?

• What does σ_1^2 represent? · envor from apprixinging square - not on computer ever of using the computers floating point representative of the real number.

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots

• What does σ_2^2 represent? • all if the above + lack of hit this with a stat Midd 2(.) i.e. $\sigma_2^2 = \sigma_1^2 + \tilde{\sigma}^2 \equiv \text{"computer tode energy"} + \text{"undel energy"}.$

- What about the more complicated case of t_f = η(h₀; g, v₀)?
 - σ_1^2 represents the above plus other sources of error, such as error from the solver routine used to approximate the solution of $\frac{1}{2}gt^2 + v_0t + h_0 = 0$.
 - e.g. this may be related to the error tolerance of a Newton-Raphson scheme for solving this equation.
 - or, the accuracy of a Runge-Kutta differential equation solver.
 - etc...

- Simplifying assumptions: assume $\epsilon_1 = \epsilon_2 = 0$.
- This means our statistical model Z(·) should interpolate the output of η(·).
- This seems innocuous in simple problems, this error is on the order of machine precision $\sim 1e 16$.
- On the other hand, the mathematics literature is filled with decades of research on implementing numerical codes on computer for solving intractable math problems while controlling/minimizing the error of approximation.
- So how innocuous is it, really?

Emulating Outputs from a Simulator

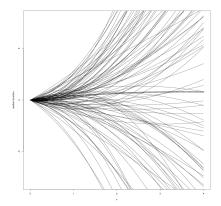
- Say we collect y = (y(x₁),..., y(x_n)) at (x₁,..., x_n) unique settings of the simulator inputs
- A statistical model for this data is to treat y as observations from an unknown realization y of a stochastic process {Y(x) : x ∈ [I, u] ⊂ ℝ} where the realization was observed at x₁,..., x_n. (I often will just write Y(x)).

Random Functions

- Recall: $Y \sim f_Y$ Y is a random variable
- Recall: $\mathbf{Y} = (Y_1, \dots, Y_n) \sim f_{\mathbf{Y}}$ Y is a random vector
- Can we have $\bm{Y}\sim \mathit{f}_{\bm{Y}}$ where \bm{Y} is a random function? It turns out yes, we can.

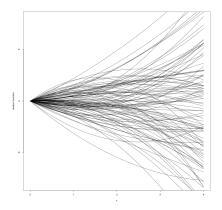
Random Polynomial Function Example

• Consider
$$y = \beta_1 x + \beta_2 x^2 = X^T \beta$$
 with $\beta = (\beta_1, \beta_2)^T \sim N(0, \Sigma)$. Here, $\Sigma = I$.



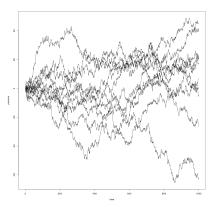
Random Polynomial Function Example

• Consider
$$y = \beta_1 x + \beta_2 x^2 = X^T \beta$$
 with $\beta = (\beta_1, \beta_2)^T \sim N(0, \Sigma)$. Here, $\Sigma_{11} = \Sigma_{22} = 1$ and $\Sigma_{12} = -0.9$.



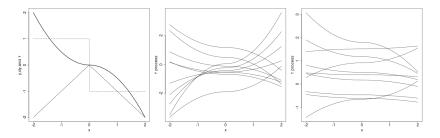
Wiener Process

• Say $\{Z_i\}_{i=1}^n$ are iid standard normal random variables and $t \in [0, 1]$ and let [nt] be the integer part of nt. Define $w_{n,t} = \frac{1}{\sqrt{n}} \sum_{i=1}^{[nt]} z_i$. Then $w_{n,t}$ converges in distribution to a Wiener process on [0, 1] as $n \to \infty$. Wiener process is continuous but nowhere differentiable.



Example of a Once-Differentiable Random Functions

 Recall that y = abs(x) is continuous but not differentiable as the derivative has a discontinuity at x = 0. It follows that the integral is a once-differentiable function: y(x) = ½β₁x² + β₀ when x ≥ 0 and y(x) = -½β₁x² + β₀ otherwise. And take β ~ N(0,Σ)



Gaussian Random Function Models

- Since Gaussian distributions are fully specified by their mean & covariance, our function space will be defined through specifying these two parameters.
- Want flexibility so we can model a wide range of "function data"
- Want predictability data should inform about function values at unobserved x's, and the closer the data to such an x the more predictive the data is expected to be.

Gaussian Process

 A stochastic process Y(x), x ∈ χ ⊂ ℝ^d is a collection of random variables with underlying probability space (Ω, F, P).

 $\gamma(\chi, \omega), \chi \in \chi, \omega \in \mathcal{L}$ $\frac{1}{2} \times \chi \rightarrow \chi(\cdot) : \mathcal{R} \rightarrow \mathcal{R} (a function)$ $\frac{1}{2} \times \chi \rightarrow \chi(\cdot) : \mathcal{R} \rightarrow \mathcal{R} (a random)$ $\frac{1}{2} \times \chi \rightarrow \chi(\cdot) : \mathcal{R} \rightarrow \mathcal{R} (a random)$ $\frac{1}{2} \times \chi \rightarrow \chi(\cdot) : \mathcal{R} \rightarrow \mathcal{R} (a random)$

 A stochastic process Y(x) is an infinite-dimensional Gaussian Process (GP) if for any x₁,..., x_n ∈ χ and any n finite, the joint distribution of y(x₁),..., y(x_n) ≡ y is

$$\mathbf{y} \sim MVN\left(\mu(\mathbf{x}), \Sigma(\mathbf{x})\right)$$

• We will assume Y(x) is a stationary process.

Strict Stationarity

• $\{Y(x)\}_{x \in \chi}$ is strictly stationary if for any $k \ge 1$ and any $x_1, \ldots, x_k \in \chi$ and any h s.t. $x_1 + h, \ldots, x_k + h \in \chi$ then

$$P(Y(x_1),\ldots,Y(x_k))=P(Y(x_1+h),\ldots,Y(x_k+h))$$

- Properties:
 - (i.) P(Y(x)) is the same for all x. E.g. for a GP, this means the variance of the marginal distribution of Y(x) is the same ∀x ∈ χ.
 - (ii.) Suppose {Y(x)}_{x∈χ} is strictly stationary and Y(x) has finite mean and variance. Then
 Cov(Y(x_i), Y(x_j)) = c(x_j x_i) = c(h) where h = x_j x_i. c(·)
 is called the *covariance function*.

Weak Stationarity a.k.a. Covariance Stationarity

• Suppose $\{Y(x)\}_{x\in\chi}$ has finite second moments $\forall x$.

Definition: a process $\{Y(x)\}_{x \in \chi}$ with second moments is covariance stationary if

- (i.) E[Y(x)] is the same $\forall x$.
- (ii.) $Cov(Y(x_i), Y(x_j)) = c(x_j x_i).$

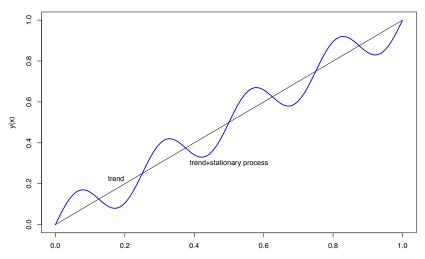
Note: if $\{Y(x)\}$ is strictly stationary and has finite second moments, then $\{Y(x)\}$ is covariance stationary.

Fact: the GP {Y(x)}_{x∈χ} is strictly stationary ⇔ {Y(x)}_{x∈χ} is covariance stationary (the MVN distribution is fully characterized by it's mean and covariance).

Gaussian Process

241

- $Y(x) = \sum_i \beta_i f_i(x) + Z(x), Z(x) \sim GP(0, c(\cdot))$
 - $\sum_{i} \beta_i f_i(x)$ captures large-scale trends
 - $\overline{Z}(x)$ captures smaller-scale variability



Covariance Functions

• Suppose $\{Z(x)\}_{x \in \chi}$ is a stationary GP, so $Cov(Z(x_i), Z(x_j)) = c(x_j - x_i), x_i \in \chi \subset \mathbb{R}^d$ and where $c(\cdot) : \mathbb{R}^d \to \mathbb{R}$ is a covariance function.

Property 1:

every valid covariance function must satisfy c(h) = c(-h), that is, covariance functions are *even*.

Property 2:

every valid covariance function must be non-negative definite, that is:

$$\sum_{i=1}^{k}\sum_{j=1}^{k}\alpha_{i}\alpha_{j}c(x_{j}-x_{i})\geq 0$$

for any k and any $\alpha_i, \alpha_j \in \mathbb{R}$ and any $x_i, x_j \in \chi$.

Covariance Functions

One way to think of this is as

$$Var\left(\sum_{i}w_{i}Y(x_{i})
ight)\geq0$$

 Another way results from the p.s.d. requirement of covariance matrices, since it must hold that the quadratic form

$$\mathbf{y}^{\mathcal{T}} \boldsymbol{\Sigma}^{-1} \mathbf{y} \geq \mathbf{0}.$$

Correlation Functions

 It is actually much more popular to work with correlation functions:

$$V(Z(x)) = \sigma^2 \forall x \in \chi$$
$$Cor(Z(x_i), Z(x_j)) = \frac{Cov(Z(x_i), Z(x_j))}{\sqrt{\sigma^2}\sqrt{\sigma^2}} = \frac{c(x_j - x_i)}{\sigma^2} = R(x_j - x_i).$$

- If $x_i = x_j$ then $Cor(x_i, x_j) = \sigma^2 / \sigma^2 = 1$, i.e. $R(x_j - x_i) = R(0) = 1$.
- Correlation functions must also satisfy the non-negative definite property.

Isotropy

A more restrictive correlation function is

$$Cor(x_i, x_j) = R(||x_j - x_i||)$$

where $|| \cdot ||$ denotes Euclidean distance.

• this model implies *rotational invariance*.

Anisotropy

A correlation function is anisotropic if

$$Cor(x_i, x_j) = R(||x_j - x_i||_{\mathcal{K}})$$

where

$$||x_j - x_i||_{\mathcal{K}}^2 = (x_j - x_i)^T \mathcal{K}(x_j - x_i).$$

- this model implies stretching/scaling along axes (when K is diagonal) and possibly axis rotation (much like PCA regression).
- the most popular anisotropic models take K to be a diagonal matrix.