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Today

Ball Drop Experiment



Ball Drop Experiment

• Recall our ball-drop experiment, which gave us a closed-form
solution for drop time:

t

f

= —


h0 = t

f

(h0)

where — =


≠2/g .

• So t

f

(h0) describes the behavior of our ball, at least according
to physics and under some assumptions.

• More generally, we might think of it as

t

f

= ÷(h0; g).



Ball Drop Experiment
• What if the initial condition h

Õ(0) is unknown and/or needs to
be estimated?

• The solution becomes more complicated:

h(t) = 1
2gt

2 + v0t + h0

where v0 is the initial velocity at time 0.
•

t

f

(g , v0, h0) is the solution to 1
2gt

2 + v0t + h0 = 0 since
h(t

f

) = 0 :

t

f

=
≠v0 ≠

Ò
v

2
0 ≠ 2gh0

g

• Could also think of it as t

f

= ÷(h0; g , v0), which is some
simulator model (e.g. Newton-Raphson) that “solves” the
equation above.



Ball Drop Experiment

• Suppose we implement t

f

(h0) as a computer code, let’s call it
÷(h0).

• Suppose we have a statistical emulator Z (·).
• What is a statistical model for the drop time?

•
t

f

i

= ÷(h0,i) + ‘1 = Z (h0,i) + ‘2
• ‘1 ≥ N(0, ‡2

1)
• ‘2 ≥ N(0, ‡2

2)

• What does ‡2
1 represent? What about ‡2

2?



Modeling the Ball Drop Experiment

• What does ‡2
1 represent?

• error from using the floating-point representation on computer
of the real numbers

• error from approximating the square-root on computer, since
performing the square-root calculation is not an exact operation.

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots

emr from appwtimahhg square- not on Computer

error of using the computers floating point representation
ofthe real number .



Modeling the Ball Drop Experiment

• What does ‡2
2 represent?

• all of the above plus lack-of-fit from using a simple statistical
model, Z (·) for the data

• in other words, ‡2
2 = ‡2

1 + ‡̃2 © “computing error” + “modeling
error”

all of the above t lack of fit from using our slut

model zc . )

ie - of = of + F I
"

computer code error
"
t

" model anon
' '

.



Modeling the Ball Drop Experiment

• What about the more complicated case of t

f

= ÷(h0; g , v0)?
• ‡2

1 represents the above plus other sources of error, such as
error from the solver routine used to approximate the solution
of 1

2 gt

2 + v0t + h0 = 0.
• e.g. this may be related to the error tolerance of a

Newton-Raphson scheme for solving this equation.
• or, the accuracy of a Runge-Kutta di�erential equation solver.
• etc. . .



Modeling the Ball Drop Experiment

• Simplifying assumptions: assume ‘1 = ‘2 = 0.

• This means our statistical model Z (·) should interpolate the
output of ÷(·).

• This seems innocuous – in simple problems, this error is on the
order of machine precision ≥ 1e ≠ 16.

• On the other hand, the mathematics literature is filled with
decades of research on implementing numerical codes on
computer for solving intractable math problems while
controlling/minimizing the error of approximation.

• So how innocuous is it, really?



Emulating Outputs from a Simulator

• Say we collect y = (y(x1), . . . , y(x
n

)) at (x1, . . . , x

n

) unique
settings of the simulator inputs

• A statistical model for this data is to treat y as observations
from an unknown realization y of a stochastic process
{Y (x) : x œ [l , u] µ R} where the realization was observed at
x1, . . . , x

n

. (I often will just write Y (x)).



Random Functions

• Recall: Y ≥ f

Y

- Y is a random variable
• Rcall: Y = (Y1, . . . , Y

n

) ≥ fY - Y is a random vector
• Can we have Y ≥ fY where Y is a random function? It turns

out yes, we can.

e



Random Polynomial Function Example

• Consider y = —1x + —2x

2 = X

T — with
— = (—1, —2)T ≥ N(0, �). Here, � = I.



Random Polynomial Function Example

• Consider y = —1x + —2x

2 = X

T — with
— = (—1, —2)T ≥ N(0, �). Here, �11 = �22 = 1 and
�12 = ≠0.9.



Wiener Process
• Say {Z

i

}n

i=1 are iid standard normal random variables and
t œ [0, 1] and let [nt] be the integer part of nt. Define
w

n,t = 1Ô
n

q[nt]
i=1 z

i

. Then w

n,t converges in distribution to a
Wiener process on [0, 1] as n æ Œ. Wiener process is
continuous but nowhere di�erentiable.



Example of a Once-Di�erentiable Random Functions

• Recall that y = abs(x) is continuous but not di�erentiable as
the derivative has a discontinuity at x = 0. It follows that the
integral is a once-di�erentiable function: y(x) = 1

2—1x

2 + —0
when x Ø 0 and y(x) = ≠1

2—1x

2 + —0 otherwise. And take
— ≥ N(0, �)



Gaussian Random Function Models

• Since Gaussian distributions are fully specified by their mean &
covariance, our function space will be defined through
specifying these two parameters.

• Want flexibility so we can model a wide range of “function
data”

• Want predictability - data should inform about function values
at unobserved x ’s, and the closer the data to such an x the
more predictive the data is expected to be.



Gaussian Process

• A stochastic process Y (x), x œ ‰ µ Rd is a collection of
random variables with underlying probability space (�, F , P).

Y (x , Ê), x œ ‰, Ê œ � ≠æ
fix Ê Y (·) : Rd æ R (a function)

Y (x , Ê), x œ ‰, Ê œ � ≠æ
fix x

Y (·) : � æ R (a random variable)
• A stochastic process Y (x) is an infinite-dimensional Gaussian

Process (GP) if for any x1, . . . , x

n

œ ‰ and any n finite, the
joint distribution of y(x1), . . . , y(x

n

) © y is

y ≥ MVN (µ(x), �(x))

• We will assume Y (x) is a stationary process.

Ylx ,
w ) , * x , won ¥044

:# → klatnaml

th
> y( . , : R - R language )

.



Strict Stationarity

• {Y (x)}
xœ‰ is strictly stationary if for any k Ø 1 and any

x1, . . . , x

k

œ ‰ and any h s.t. x1 + h, . . . , x

k

+ h œ ‰ then

P(Y (x1), . . . , Y (x
k

)) = P(Y (x1 + h), . . . , Y (x
k

+ h))

• Properties:
• (i.) P(Y (x)) is the same for all x . E.g. for a GP, this means

the variance of the marginal distribution of Y (x) is the same
’x œ ‰.

• (ii.) Suppose {Y (x)}
xœ‰ is strictly stationary and Y (x) has

finite mean and variance. Then
Cov(Y (x

i

), Y (x
j

)) = c(x
j

≠ x

i

) = c(h) where h = x

j

≠ x

i

. c(·)
is called the covariance function.



Weak Stationarity a.k.a. Covariance Stationarity
• Suppose {Y (x)}

xœ‰ has finite second moments ’x .

Definition: a process {Y (x)}
xœ‰ with second moments is

covariance stationary if

• (i.) E [Y (x)] is the same ’x .
• (ii.) Cov(Y (x

i

), Y (x
j

)) = c(x
j

≠ x

i

).

Note: if {Y (x)} is strictly stationary and has finite second
moments, then {Y (x)} is covariance stationary.

• Fact: the GP {Y (x)}
xœ‰ is strictly stationary … {Y (x)}

xœ‰ is
covariance stationary (the MVN distribution is fully
characterized by it’s mean and covariance).

Note: we can still handle simple forms of nonstationarity with the GP, e.g.
think mean trend and smaller-scale variability (stationary process).



Gaussian Process
•

Y (x) = q
i

—
i

f

i

(x) + Z (x), Z (x) ≥ GP(0, c(·))
•

q
i

—
i

f

i

(x) captures large-scale trends
•

Z (x) captures smaller-scale variability
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Covariance Functions

• Suppose {Z (x)}
xœ‰ is a stationary GP, so

Cov(Z (x
i

), Z (x
j

)) = c(x
j

≠ x

i

), x

i

œ ‰ µ Rd and where
c(·) : Rd æ R is a covariance function.

Property 1:

every valid covariance function must satisfy c(h) = c(≠h), that is,
covariance functions are even.
Property 2:

every valid covariance function must be non-negative definite, that
is:

kÿ

i=1

kÿ

j=1
–

i

–
j

c(x
j

≠ x

i

) Ø 0

for any k and any –
i

, –
j

œ R and any x

i

, x

j

œ ‰.



Covariance Functions

• One way to think of this is as

Var

A
ÿ

i

w

i

Y (x
i

)
B

Ø 0

• Another way results from the p.s.d. requirement of covariance
matrices, since it must hold that the quadratic form

yT �≠1y Ø 0.



Correlation Functions

• It is actually much more popular to work with correlation
functions:

V (Z (x)) = ‡2’x œ ‰

Cor(Z (x
i

), Z (x
j

)) = Cov(Z (x
i

), Z (x
j

))Ô
‡2

Ô
‡2 = c(x

j

≠ x

i

)
‡2 = R(x

j

≠x

i

).

• If x

i

= x

j

then
Cor(x

i

, x

j

) = ‡2/‡2 = 1, i.e. R(x
j

≠ x

i

) = R(0) = 1.

• Correlation functions must also satisfy the non-negative definite
property.



Isotropy

• A more restrictive correlation function is

Cor(x
i

, x

j

) = R(||x
j

≠ x

i

||)

where || · || denotes Euclidean distance.
• this model implies rotational invariance.



Anisotropy

• A correlation function is anisotropic if

Cor(x
i

, x

j

) = R(||x
j

≠ x

i

||
K

)

where
||x

j

≠ x

i

||2
K

= (x
j

≠ x

i

)T

K (x
j

≠ x

i

).

• this model implies stretching/scaling along axes (when K is
diagonal) and possibly axis rotation (much like PCA regression).

• the most popular anisotropic models take K to be a diagonal
matrix.


