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Today

Ball Drop Experiment



Ball Drop Experiment

= Recall our ball-drop experiment, which gave us a closed-form
solution for drop time:

tr = Bv/'ho = tr(ho)
where = /—2/g.

= So tr(hg) describes the behavior of our ball, at least according
to physics and under some assumptions.

= More generally, we might think of it as

tr = n(ho; g).



Ball Drop Experiment

What if the initial condition h’(0) is unknown and/or needs to
be estimated?

The solution becomes more complicated:
I
h(t) = 5gt + vot + ho

where vy is the initial velocity at time 0.

tr(g, vo, ho) is the solution to %gt2 4 vot + hg = 0 since

h(tf) =0:
—vy — \/vg — 2ghg
g

Could also think of it as tr = n(ho; g, vo), which is some
simulator model (e.g. Newton-Raphson) that “solves” the
equation above.

tr =



Ball Drop Experiment

Suppose we implement tf(hg) as a computer code, let's call it
n(ho).

Suppose we have a statistical emulator Z(-).

What is a statistical model for the drop time?

=ty = 77(/70,,') + €1 = Z(ho,i) + €
" €1 N(070%)
= e~ N(0,03)

What does o2 represent? What about 037



Modeling the Ball Drop Experiment

= What does o2 represent?
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https://en.wikipedia.org/wiki/Methods_of_computing_square_roots



Modeling the Ball Drop Experiment

= What does o3 represent?
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Modeling the Ball Drop Experiment

= What about the more complicated case of tr = n(ho; g, vo)?

= o7 represents the above plus other sources of error, such as
error from the solver routine used to approximate the solution
of %gt2 + vt + hg = 0.

= e.g. this may be related to the error tolerance of a
Newton-Raphson scheme for solving this equation.

= or, the accuracy of a Runge-Kutta differential equation solver.

= etc...



Modeling the Ball Drop Experiment

Simplifying assumptions: assume €1 = €3 = 0.

This means our statistical model Z(+) should interpolate the
output of 7(+).

This seems innocuous — in simple problems, this error is on the
order of machine precision ~ le — 16.

On the other hand, the mathematics literature is filled with
decades of research on implementing numerical codes on

computer for solving intractable math problems while
controlling/minimizing the error of approximation.

So how innocuous is it, really?



Emulating Outputs from a Simulator

= Say we collect y = (y(x1),...,¥(xn)) at (x1,...,xpn) unique
settings of the simulator inputs

= A statistical model for this data is to treat y as observations
from an unknown realization y of a stochastic process
{Y(x) : x € [, u] C R} where the realization was observed at
X1, ..., Xn. (I often will just write Y(x)).



Random Functions

= Recall: Y ~ fy - Y is a random variable
» Reall: Y =(Y1,...,Ys) ~fy - Yis arandom vector

= Can we have Y ~ fy where Y is a random function? It turns
out yes, we can.



Random Polynomial Function Example

= Consider y = f1x + f2x* = XT3 with
B=(B1,B2)" ~ N(0,%). Here, ¥ = |.




Random Polynomial Function Example

= Consider y = fB1x + fox? = X7 8 with
B = (617/82)7— ~ N(O, Z) Here, >11 = 22 =1 and
Y10 =-0.9.




Wiener Process

= Say {Z;}_; are iid standard normal random variables and
t € [0,1] and let [nt] be the integer part of nt. Define
Wnt = % Zgﬂ z;. Then w, ; converges in distribution to a
Wiener process on [0, 1] as n — oco. Wiener process is
continuous but nowhere differentiable.




Example of a Once-Differentiable Random Functions

= Recall that y = abs(x) is continuous but not differentiable as
the derivative has a discontinuity at x = 0. It follows that the
integral is a once-differentiable function: y(x) = %,61X2 + Bo
when x > 0 and y(x) = —181x% + By otherwise. And take
B~ N(0,%X)




Gaussian Random Function Models

= Since Gaussian distributions are fully specified by their mean &
covariance, our function space will be defined through
specifying these two parameters.

= Want flexibility so we can model a wide range of “function
data”

= Want predictability - data should inform about function values
at unobserved x's, and the closer the data to such an x the
more predictive the data is expected to be.



Gaussian Process

= A stochastic process Y (x),x € x C R? is a collection of
random variables with underlying probability space (22, F, P).

27 YO R B (o i)

\/(Q‘/ (")) ) e )?)L,)éﬂ- ZR\

¥ >Y(') LQ—"JL (2 /::62?‘{)

= A stochastic process Y(x) is an infinite-dimensional Gaussian
Process (GP) if for any x1,...,x, € x and any n finite, the
joint distribution of y(x1),...,y(xy) =y is

y ~ MVN (u(x), X(x))

= We will assume Y(x) is a stationary process.



Strict Stationarity

= {Y(x)}xey is strictly stationary if for any k > 1 and any
X1,...,Xx € x and any hs.t. x1 + h,...,xx+ h € x then

P(Y(x1),...,Y(xk)) = P(Y(x1 + h),...,Y(xk + h))

= Properties:

= (i.) P(Y(x)) is the same for all x. E.g. for a GP, this means
the variance of the marginal distribution of Y(x) is the same
Vx € x.

= (ii.) Suppose {Y(x)}xey is strictly stationary and Y(x) has
finite mean and variance. Then
Cov(Y(xi), Y(x;)) = c(x; — x;) = c(h) where h = x; — x;. c(+)
is called the covariance function.



Weak Stationarity a.k.a. Covariance Stationarity

= Suppose {Y(x)}xey has finite second moments Vx.

Definition: a process { Y(x)}xey with second moments is
covariance stationary if

= (i.) E[Y(x)] is the same Vx.
= (ii.) Cov(Y(x:), Y(xj)) = c(x; — xi)-

Note: if {Y(x)} is strictly stationary and has finite second
moments, then {Y'(x)} is covariance stationary.

= Fact: the GP {Y/(x)}xey is strictly stationary < {Y(x)}xey is
covariance stationary (the MVN distribution is fully
characterized by it's mean and covariance).



24
Gaussian Process
Y(x) =32 Bifi(x) + Z(x), Z(x) ~ GP(0, ¢(-))
= > . Bifi(x) captures large-scale trends o
= Z(x ) captures smaller-scale variability

trend+stationary process




Covariance Functions

= Suppose {Z(x)}xey is a stationary GP, so
Cov(Z(x1), Z(x;)) = c(xj — xi),xi € x C R? and where
c(:) : R? — R is a covariance function.

Property 1:

every valid covariance function must satisfy c(h) = c(—h), that is,
covariance functions are even.

Property 2:

every valid covariance function must be non-negative definite, that
is:
kK
Z Z ajajc(xj — x;) > 0
i=1j=1

for any k and any aj,a; € R and any x;, x; € x.



Covariance Functions

= One way to think of this is as

Var (Z W,'Y(X,')) >0

= Another way results from the p.s.d. requirement of covariance
matrices, since it must hold that the quadratic form

y'zly>o.



Correlation Functions

= |t is actually much more popular to work with correlation
functions:
V(Z(x)) = o%x € x
Cov(Z(xi),Z(x;)) c(xj — xi)
Cor(Z(x,-),Z(XJ-)) = \/0*2\/; = 102 = R(XJ'_XI')'

= If x; = x; then
Cor(xi,x;) = 0%/o% =1, i.e. R(xj —x;) = R(0) = 1.

= Correlation functions must also satisfy the non-negative definite
property.



Isotropy

= A more restrictive correlation function is
Cor(xi, x;) = R(I[x; — xil|)

where || - || denotes Euclidean distance.

= this model implies rotational invariance.



Anisotropy

= A correlation function is anisotropic if
Cor(xi, x;) = R(l|x; — xil[k)

where
g = xillk = G5 = x) K G = xi),
j J] j

= this model implies stretching/scaling along axes (when K is
diagonal) and possibly axis rotation (much like PCA regression).

= the most popular anisotropic models take K to be a diagonal
matrix.



